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ABSTRACT 

Background: Urinary tract infections (UTIs) are among the most prevalent bacterial 

infections worldwide, with Escherichia coli and Klebsiella spp. being the leading 

causative agents. The increasing emergence of antibiotic resistance in uropathogens 

has complicated empirical treatment strategies, necessitating continuous surveillance 

of resistance trends. This study aims to isolate, identify, and characterize bacterial 

strains from UTI patients, analyze their antibiotic susceptibility patterns, and explore 

machine learning-based predictive models for resistance classification. 

Methods: A descriptive cross-sectional study was conducted at Konaseema institute 

of Medical Sciences and Research Foundation, Amalapuram, over a one-year period 
(June 2023 – July 2024). A total of 1,720 urine samples were analyzed, of which 624 

(36.2%) showed significant bacterial growth. Bacterial isolates were identified using 

standard microbiological techniques, including culture on Blood Agar, MacConkey 

Agar, and CLED Agar, Gram staining, and biochemical testing. Antibiotic 

susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion 

method, following CLSI guidelines. Statistical analysis included Chi-Square tests to 

assess associations between bacterial species and resistance patterns, and a Random 

Forest classification model to predict resistance trends based on susceptibility 

profiles. 

Results: Among the 624 culture-positive samples, E. coli (45.7%) was the most 

prevalent uropathogen, followed by Klebsiella spp. (19.9%), Staphylococcus aureus 
(13.6%), and Pseudomonas aeruginosa (7.4%). Antibiotic resistance rates were 

highest among Non-Fermenters, particularly against β-lactam antibiotics. 

Enterobacterales exhibited significant resistance to third-generation cephalosporins 

and fluoroquinolones, whereas Gram-Positive Cocci demonstrated variable 

resistance patterns, notably against β-lactams and macrolides. 

Chi-Square analysis revealed no statistically significant association (p > 0.05) 

between bacterial species and antibiotic resistance patterns, suggesting that resistance 

trends may be influenced by factors beyond species classification. The Random 

Forest model achieved an AUC of 1.00, demonstrating excellent discriminatory 

power in predicting bacterial classification based on resistance profiles. Ceftazidime-

Avibactam, Levofloxacin, and Piperacillin-Tazobactam were identified as the most 

influential antibiotics in resistance prediction. 
Conclusion: This study highlights the high prevalence of multidrug-resistant 

uropathogens, particularly among Non-Fermenters and Enterobacterales, reinforcing 

the need for real-time susceptibility testing and antimicrobial stewardship programs. 

The lack of significant species-resistance association emphasizes that predicting 

antibiotic resistance requires broader epidemiological and molecular analyses rather 

than relying solely on bacterial species. The successful application of machine 

learning (Random Forest) in resistance prediction presents a promising approach for 

future antimicrobial resistance surveillance. Further validation on larger datasets is 

recommended to enhance predictive accuracy and clinical applicability. 
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INTRODUCTION 

Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, affecting millions of 

individuals annually and posing a significant burden on healthcare systems (1). The etiology of UTIs is predominantly 

bacterial, with Escherichia coli (E. coli) being the most frequent causative pathogen, particularly in community-acquired 

UTIs (2). However, in recent years, other uropathogens such as Klebsiella spp., Pseudomonas aeruginosa, 

Staphylococcus aureus, and Enterococcus spp. have emerged as significant contributors, especially in complicated and 

nosocomial UTIs (3). 

The increasing antibiotic resistance among uropathogens has complicated the management of UTIs, leading to treatment 

failures and prolonged hospital stays (4). The rise of extended-spectrum β-lactamases (ESBLs), carbapenem-resistant 

Enterobacterales (CRE), and multidrug-resistant (MDR) pathogens has significantly reduced the efficacy of empirical 

antibiotic therapy, making resistance surveillance a critical component of infection management (5). As a result, there is 
an urgent need to monitor resistance patterns, optimize treatment strategies, and establish updated antibiograms to guide 

clinicians in selecting appropriate empirical therapy. 

The identification and characterization of uropathogens remain essential in understanding the local epidemiology of UTI-

causing bacteria. Traditional culture-based methods, Gram staining, and biochemical tests continue to be gold-standard 

techniques for bacterial identification, but emerging molecular methods, such as PCR-based detection and whole-genome 

sequencing, offer more precise identification and resistance profiling (6). However, resource limitations in many clinical 

laboratories restrict the widespread use of molecular techniques, making conventional microbiological methods 

indispensable. 

Antibiotic susceptibility testing (AST) plays a crucial role in determining the appropriate treatment options for UTIs. The 

Kirby-Bauer disk diffusion method, based on Clinical and Laboratory Standards Institute (CLSI) guidelines, remains the 

most widely used AST technique due to its cost-effectiveness and reliability . However, given the rapid evolution of 
resistance mechanisms, there is a growing interest in using machine learning models and artificial intelligence to predict 

resistance trends and guide personalized antibiotic selection. 

This study aims to isolate, identify, and characterize bacterial pathogens from UTI patients, assess their antibiotic 

susceptibility profiles, and explore predictive models for resistance trends. The findings will contribute to a better 

understanding of regional antimicrobial resistance patterns and help improve antimicrobial stewardship programs to 

combat multidrug-resistant UTIs. 

 

AIMS AND OBJECTIVES 

Aim 

This study aims to isolate, identify, and characterize bacterial pathogens from urinary tract infection (UTI) cases and 

evaluate their antibiotic susceptibility patterns to better understand resistance trends and guide empirical treatment 

strategies. 

Objectives 

1. Isolation and Identification: To isolate and identify bacterial strains from urine samples of patients diagnosed with 

UTIs using standard microbiological techniques, including culture methods and biochemical tests. 

2. Characterization: To characterize the isolated bacterial strains based on their morphological, biochemical, and 

physiological properties to determine their clinical significance. 

3. Antibiogram Analysis: To determine the antibiotic susceptibility profiles of bacterial isolates using the Kirby-

Bauer disk diffusion method, following CLSI guidelines, and assess their resistance patterns using statistical and 

machine-learning models. 

 

MATERIALS AND METHODS 

Study Design and Setting 
This study is a descriptive cross-sectional study conducted Konaseema institute of Medical Sciences and Research 

Foundation, Amalapuram, over a period of one year (June 2023 – July 2024). The study aimed to isolate, identify, and 

characterize bacterial pathogens from urinary tract infection (UTI) cases and evaluate their antibiotic susceptibility 

patterns. 

 

Study Population and Sample Collection 

Patients presenting with clinically suspected UTIs were recruited for the study following institutional ethical clearance. 

Mid-stream urine samples were collected from these patients in sterile, leak-proof containers using standard aseptic 

Keywords: Urinary tract infections, Antibiotic resistance, antimicrobial stewardship, 

Random Forest model, Machine learning, Empirical therapy, Multidrug resistance. 
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techniques. Samples were transported to the microbiology laboratory within [Specify timeframe] and processed 

immediately to prevent bacterial overgrowth or contamination. 

 

Bacterial Isolation and Identification 

Urine samples were cultured on Blood Agar, MacConkey Agar, and Cysteine Lactose Electrolyte-Deficient (CLED) Agar 
and incubated at 37°C for 24–48 hours. Bacterial growth was assessed, and significant isolates were subjected to 

morphological characterization, Gram staining, and biochemical identification tests. The biochemical tests performed 

included catalase, oxidase, indole, urease, citrate utilization, and sugar fermentation tests, following standard 

microbiological protocols. 

 

Antibiotic Susceptibility Testing 

The antibiotic susceptibility of bacterial isolates was determined using the Kirby-Bauer disk diffusion method, in 

accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. A panel of antibiotics, including β-

lactams, fluoroquinolones, aminoglycosides, and carbapenems, was tested. The diameter of inhibition zones was 

measured, and susceptibility or resistance was classified based on CLSI interpretive breakpoints. 

 

Statistical Analysis 
Data were analyzed using statistical software (SPSS, R, or Python). The prevalence of bacterial species and their 

antibiotic resistance profiles were determined. The Chi-square test was used to assess the association between bacterial 

species and antibiotic resistance patterns. Since logistic regression was deemed unsuitable due to data distribution, a 

Random Forest classification model was applied to evaluate the predictive value of resistance trends. 

 

Ethical Considerations 

Ethical approval for the study was obtained from the Institutional Ethics Committee at Konaseema institute of Medical 

Sciences and Research Foundation, Amalapuram. Informed consent was obtained from all participants before sample 

collection. Strict biosafety protocols were followed during the handling of bacterial isolates to minimize the risk of 

laboratory-acquired infections. 

 

 RESULTS 

 Distribution of Bacterial Isolates in UTI Samples 

A total of 1,720 urine samples were analyzed in this study, of which 624 (36.2%) showed significant bacterial growth. 

The distribution of bacterial isolates among culture-positive samples is summarized in Table 1. 

Among the isolated pathogens, Escherichia coli (E. coli) was the most prevalent organism, accounting for 45.7% (n=285) 

of UTI cases, followed by Klebsiella spp. (19.9%), Staphylococcus aureus (13.6%), and Pseudomonas aeruginosa 

(7.4%). Other isolates included Coagulase-negative Staphylococci (CONS), Enterobacter spp., Acinetobacter spp., 

Proteus spp., and Streptococcus spp., each contributing to a smaller proportion of the infections. The distribution of these 

isolates is visually represented in Figure 1 (bar chart) and Figure 2 (pie chart). 

These findings highlight the predominance of Gram-negative bacteria, particularly E. coli and Klebsiella spp., as the 

leading causative agents of UTIs. Gram-positive organisms, including S. aureus and Streptococcus spp., were less 

frequently isolated. 

 

Table 1: Distribution of Bacterial Isolates in UTI Samples 

Bacterial Species Number of Isolates (n) Percentage (%) 

Escherichia coli (E. coli) 285 45.7% 

Klebsiella spp. 124 19.9% 

Staphylococcus aureus (S. aureus) 85 13.6% 

Pseudomonas aeruginosa 46 7.4% 

Coagulase-negative Staphylococci (CONS) 33 5.3% 

Enterobacter spp. 20 3.2% 

Acinetobacter spp. 11 1.8% 

Proteus spp. 15 2.4% 

Streptococcus spp. 5 0.8% 

Total 624 100% 
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Figure1: Distribution Of Bacterial Isolates in UTI Samples 

 
 

 

 

Figure2: Proportion of Bacterial Species in UTI Samples 

 
 

 Antibiotic Susceptibility Patterns 

 Resistance Rates Across Bacterial Groups 

Antibiotic susceptibility testing was conducted using the Kirby-Bauer disk diffusion method, following CLSI (Clinical 

and Laboratory Standards Institute) guidelines. The resistance rates for different bacterial groups are summarized in 

Table 2. 

Overall, non-fermenters exhibited the highest resistance rates, particularly against β-lactam antibiotics. Enterobacterales 
demonstrated high resistance to third-generation cephalosporins and fluoroquinolones, whereas Gram-Positive Cocci 

exhibited variable resistance patterns, with high resistance to beta-lactams and macrolides. 
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Table 2: Antibiotic Resistance Rates Among Different Bacterial Groups (%) 

Antibiotic Enterobacterales Non-Fermenters Gram-Positive Cocci 

Amoxiclav 31% IR 60% 

Ampicillin-Sulbactam 17% 40% - 

Ceftazidime 26% 14% 31% 

Ceftriaxone 26% IR 31% 

Levofloxacin - 51% 25% 

Tetracycline - 25% 16% 

Gentamycin - 52% 60% 

Co-trimoxazole 49% IR 70% 

Piperacillin-Tazobactam 59% 60% - 

Cefoperazone-Sulbactam 61% 33% - 

Ceftazidime-Avibactam 58% 27% - 

Meropenem 78% 59% - 

Minocycline 78% 26% 86% 

Nitrofurantoin 78% - 80% 

Norfloxacin 32% 38% 32% 

IR = Intermediate Resistance; - = Not Tested 
 

Figure 3 (Stacked Bar Chart) Compares resistance frequencies among Enterobacterales, Non-Fermenters, and Gram-

Positive Cocci. 

 

 
 

Table 3: Chi-Square Test Results (Association Between Bacterial Species and Antibiotic Resistance) 

Antibiotic Chi-Square Value (χ²) p-Value Degrees of Freedom (DOF) 

Amoxiclav 9 0.342 8 

Ampicillin-Sulbactam 0 1.000 0 

Ceftazidime 0 1.000 0 

Ceftriaxone 0 1.000 0 

Levofloxacin 9 0.342 8 

Tetracycline 0 1.000 0 

Gentamycin 9 0.342 8 



The Journal Biomedical and Biopharmaceutical Research(e-issn:21822379|p-

issn:21822360) is licensed under a Creative Commons Attribution 4.0 International 

License.  

 

78 

 

Antibiotic Chi-Square Value (χ²) p-Value Degrees of Freedom (DOF) 

Co-trimoxazole 9 0.342 8 

Piperacillin-Tazobactam 9 0.342 8 

Cefoperazone-Sulbactam 9 0.342 8 

Ceftazidime-Avibactam 9 0.342 8 

Meropenem 9 0.342 8 

Minocycline 9 0.342 8 

Nitrofurantoin 9 0.342 8 

Norfloxacin 9 0.342 8 

 
The above The Chi-Square test results in the table 3 indicate that there is no statistically significant association between 

bacterial species and resistance patterns for most antibiotics (p > 0.05). While some variation in resistance exists, these 

differences do not reach statistical significance, suggesting that antibiotic resistance may be influenced by additional 

factors beyond bacterial species alone. 

 

Random Forest Model for Predicting Resistance Patterns 

To further understand the relationship between bacterial species and antibiotic resistance patterns, a Random Forest 

classification model was employed. The model aimed to determine whether antibiotic susceptibility patterns could 

accurately classify bacterial groups into Enterobacterales, Non-Fermenters, and Gram-Positive Cocci based on their 

resistance profiles. 

The feature importance analysis from the Random Forest model is summarized in Table 4, while Figure 4 provides a 
visual representation of the most influential antibiotics in bacterial classification. 

 

Table 4: Feature Importance Scores of Antibiotics in Predicting Bacterial Classification 

Rank Antibiotic Feature Importance Score 

1 Ceftazidime-Avibactam 0.1449 

2 Levofloxacin 0.1121 

3 Piperacillin-Tazobactam 0.1087 

4 Cefoperazone-Sulbactam 0.0994 

5 Nitrofurantoin 0.0857 

6 Co-trimoxazole 0.0680 

7 Minocycline 0.0611 

8 Meropenem 0.0599 

9 Tetracycline 0.0534 

10 Ceftriaxone 0.0497 

11 Norfloxacin 0.0447 

12 Ampicillin-Sulbactam 0.0442 

13 Gentamycin 0.0292 

14 Amoxiclav 0.0196 

15 Ceftazidime 0.0195 

 

 

 

 

 

 



The Journal Biomedical and Biopharmaceutical Research(e-issn:21822379|p-

issn:21822360) is licensed under a Creative Commons Attribution 4.0 International 

License.  

 

79 

 

 

 

 

 

Figure 4 presents a bar graph ranking these antibiotics based on their predictive power in bacterial classification. 

 
 

Comparison of Resistance Patterns Across Bacterial Groups 

 

Figure5-Boxplot comparison of antibiotic resistance 

 

 
 

The above Figure 5 presents a boxplot comparison of antibiotic resistance rates across Enterobacterales, Non-

Fermenters, and Gram-Positive Cocci. The variation in resistance patterns across bacterial groups is evident, 

highlighting that while some antibiotics show consistent resistance trends, others exhibit high variability. These findings 
underscore the importance of individualized antibiotic selection rather than assuming resistance trends based solely on 

bacterial classification. 
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Figure6:ROC curve for the Random Forest model (Bacterial Group Classification) 

 
 
The above figure 6 presents the ROC curve for the Random Forest model in predicting bacterial classification based on 

antibiotic resistance patterns. The high AUC values suggest strong predictive accuracy. However, further validation on a 

larger dataset is necessary to confirm the generalizability of these findings and assess potential overfitting due to the 

small sample size. 

 

DISCUSSION 

Urinary tract infections (UTIs) remain one of the most common bacterial infections worldwide, with Escherichia coli (E. 

coli) and Klebsiella spp. being the leading causative agents, as demonstrated in our study. The high prevalence of E. coli 

(45.7%) aligns with previous findings by Foxman et al. [7], who reported similar dominance of E. coli among UTI 

pathogens. The significant presence of Klebsiella spp. (19.9%) and Staphylococcus aureus (13.6%) further corroborates 

findings from Karlowsky et al. [8], who emphasized the emerging role of non-E. coli pathogens in complicated UTIs. 

These results underscore the shifting epidemiology of UTIs, highlighting the need for continuous surveillance of 
uropathogens. 

 

Antibiotic Resistance Trends and Clinical Implications 

The antibiotic susceptibility patterns in our study revealed alarming resistance rates, particularly among Enterobacterales 

and Non-Fermenters. Our findings indicate high resistance to fluoroquinolones (levofloxacin, norfloxacin) and third-

generation cephalosporins (ceftazidime, ceftriaxone), which is consistent with previous reports by Sakagianni Aet al. [9], 

who highlighted increasing resistance to these antibiotic classes in both hospital and community settings. Our Chi-Square 

test, however, revealed no statistically significant association (p > 0.05) between bacterial species and their resistance 

patterns, suggesting that species identity alone may not be the primary determinant of resistance trends. 

Similar observations have been made by Bonomo RAet al. [10], who suggested that horizontal gene transfer 

mechanisms, prior antibiotic exposure, and environmental factors may contribute more significantly to resistance patterns 
than species classification itself. The widespread resistance among Non-Fermenters (e.g., Pseudomonas aeruginosa and 

Acinetobacter spp.) also aligns with reports by Gaynes Ret al. [11], who described multidrug-resistant (MDR) 

Pseudomonas spp. as a growing concern in hospital-acquired infections. 

 

Random Forest Model and Predictive Power in Resistance Patterns 

To further investigate the predictive value of resistance patterns, we employed a Random Forest classification model, 

which demonstrated excellent discriminatory power (AUC = 1.00 for all bacterial groups). This finding reinforces the 

potential of machine learning in antimicrobial resistance surveillance, as noted by Li, Qet al. [12], who explored similar 

predictive modeling techniques in microbiology. 

Our feature importance analysis revealed that Ceftazidime-Avibactam, Levofloxacin, and Piperacillin-Tazobactam were 

the most influential antibiotics in differentiating bacterial groups. This observation is supported by Jones RNet al. [13], 

who reported that resistance to novel β-lactam inhibitors (e.g., ceftazidime-avibactam) strongly correlates with ESBL and 
carbapenemase production in Enterobacterales. The identification of fluoroquinolones and cephalosporins as key 

predictive variables suggests that these antibiotics may serve as useful markers for tracking resistance trends. 

However, while our model showed perfect classification accuracy, it is important to recognize that such high performance 

may be influenced by the dataset size. Breijyeh Zet al. [14] highlighted the risk of overfitting in machine learning models 

trained on limited datasets, emphasizing the need for external validation on larger patient populations to ensure the 

generalizability of these findings. 
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Clinical and Epidemiological Implications 

The results of this study have significant implications for empirical therapy selection and antimicrobial stewardship 

programs. Our findings indicate that bacterial species alone may not be sufficient to predict resistance trends, reinforcing 

the need for local antibiograms and real-time susceptibility testing in guiding treatment decisions. Similar conclusions 
were drawn by Blairet al. [15], who emphasized that species-based empirical therapy may be inadequate in regions with 

evolving resistance mechanisms. 

Moreover, the high resistance rates among Non-Fermenters and Gram-Negative Bacilli warrant strict infection control 

measures, particularly in hospital settings. Coxet al. [16] previously demonstrated that hospital-acquired MDR infections 

often originate from poor antimicrobial stewardship and suboptimal infection control practices, further emphasizing the 

urgency of implementing targeted interventions. 

 

Study Strengths and Limitations 

One of the strengths of this study is the comprehensive statistical and machine learning-based analysis of resistance 

patterns, which provides both traditional epidemiological insights and advanced predictive modelling. The use of 

Random Forest for resistance prediction is novel, contributing to the growing field of AI-driven antimicrobial resistance 

surveillance. 
However, this study has certain limitations. The small sample size may have influenced the model’s high classification 

accuracy, and further validation with external datasets from multiple healthcare settings is needed. Additionally, we did 

not assess the molecular mechanisms underlying resistance, such as the presence of ESBL or carbapenemase genes, 

which could further explain some of the observed resistance trends. Future research should incorporate whole-genome 

sequencing and molecular epidemiology to better characterize resistance determinants. 

 

CONCLUSION AND FUTURE DIRECTIONS 

In conclusion, our study highlights worrying antibiotic resistance trends among UTI pathogens, particularly high 

resistance to fluoroquinolones and cephalosporins. The absence of a strong statistical association between bacterial 

species and resistance patterns suggests that other factors, including genetic exchange and antimicrobial pressure, play a 

more significant role. 
The use of machine learning for resistance prediction provides valuable insights, but further validation is required before 

clinical application. Future studies should focus on expanding dataset sizes, incorporating molecular resistance markers, 

and exploring the integration of AI-based predictive models into real-time antimicrobial surveillance systems. 

As antimicrobial resistance continues to rise, personalized treatment strategies and robust antimicrobial stewardship 

programs will be crucial in mitigating the impact of drug-resistant UTIs on global public health. 
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