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1. INTRODUCTION; 

Klebsiella pneumoniae is a widespread, Gram-negative, facultative anaerobic bacterium [1]. It inhabits a variety of 

environments, including the respiratory and gastrointestinal tracts of both humans and animals [1]. Over 95% of 

infections caused by Klebsiella species are attributed to K. pneumoniae. These infections can lead to a range of clinical 

conditions, particularly in individuals with compromised immune systems. Notably, K. pneumoniae infections are 

frequently encountered in healthcare settings around the world [1]. 
Of growing concern is the emergence of genetically altered strains of K. pneumoniae that display either enhanced 

virulence or resistance to antibiotics [1]. The global rise and spread of multidrug-resistant (MDR) organisms, including 

K. pneumoniae, is a critical issue under active scientific investigation. MDR strains of K. pneumoniae pose a significant 

threat to public health due to their ability to limit available treatment options. 

Two key mechanisms underlie antibiotic resistance in K. pneumoniae. One involves the production of extended-spectrum 

β-lactamases (ESBLs), which confer resistance to cephalosporins and monobactams [1]. The other involves 

carbapenemase enzymes, which make the bacteria resistant to nearly all β-lactam antibiotics, including carbapenems [1]. 

These resistant strains have led to more than 90,000 infections and 7,000 deaths in the European region alone [2]. 

To manage infections caused by carbapenem-resistant K. pneumoniae (CRKp), clinicians often resort to last-line 

antibiotics such as colistin and tigecycline [3]. However, these drugs tend to be effective only when combined with other 

agents, rather than as standalone therapies. 
However, the use of colistin and tigecycline is associated with several adverse effects, including kidney toxicity [4]. 

Alarmingly, new strains of Klebsiella pneumoniae that produce extended-spectrum β-lactamases (ESBLs) or are 

carbapenem-resistant (CRKp) are increasingly becoming resistant even to these last-resort antibiotics. Traditional 

treatment options have largely failed to eliminate these pathogens, making multidrug-resistant (MDR) infections a 

serious threat to global health and the economy. 

Compounding the issue is a marked decline in the development of new antimicrobial agents since the golden age of 

antibiotic discovery. Contributing factors include rising resistance, reduced profitability, and regulatory hurdles. As a 

result, there is an urgent need for the discovery of new therapeutic agents to combat this growing crisis. 

Moreover, our understanding of both innate and acquired resistance mechanisms in K. pneumoniae remains incomplete. 

Therefore, it is critically important to continuously explore innovative strategies for tackling K. pneumoniae, while also 

expanding our knowledge of the molecular mechanisms behind its resistance to currently available drugs. 
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This review aims to present a detailed analysis of how K. pneumoniae resists antibiotic treatment. It further highlights the 

molecular elements responsible for both natural and acquired resistance. Additionally, this work explores emerging 

pharmacological targets that could provide valuable insights into more effective treatments for K. pneumoniae infections. 

 

2. MAIN TEXT 

2.1 Antimicrobial Resistance 

2.1.1 Intrinsic Resistance 

Klebsiella pneumoniae naturally exhibits resistance to antibiotics, making conventional therapies less effective. This 

intrinsic resistance is driven by several key mechanisms, including the production of enzymes that deactivate or alter 

antibiotics, the loss of porin channels that reduce drug entry, the increased activity of efflux pumps that expel antibiotics 

from the cell, and the formation of protective biofilms (see Fig. 1) [5, 6]. A detailed overview of these innate resistance 

mechanisms is provided in Table 1. 

 
Fig. 1 Mechanisms of K. pneumoniae innate antibiotic resistance 

 

Table 1. Intrinsic Mechanisms of Antibiotic Resistance in Klebsiella pneumoniae 

Resistance Mechanism Associated Antibiotic Classes References 

Enzymatic modification or inactivation β-Lactam antibiotics [9–12, 15, 16] 

Reduced drug uptake (decreased influx) β-Lactams and fluoroquinolones [7] 

Active drug expulsion via efflux pumps β-Lactams, macrolides, fluoroquinolones, and tetracyclines [7] 

Biofilm development Aminoglycosides, penicillins, and quinolones [8] 

 

2.1.2 Antibiotic-Modifying or Inactivating Enzymes 
Klebsiella pneumoniae commonly develops resistance to antibiotics through the modification or inactivation of these 

drugs. β-lactam antibiotics are widely used in clinical settings to treat infections caused by K. pneumoniae. These 

antibiotics function by forming covalent bonds with penicillin-binding proteins (PBPs), which play a crucial role in the 

cross-linking of peptidoglycan layers during bacterial cell wall synthesis [9]. In response, K. pneumoniae produces β-

lactamase enzymes that hydrolyze the β-lactam ring, rendering the antibiotics ineffective—a major resistance 

mechanism. 

There are three main categories of β-lactamases: cephalosporinases (AmpC), extended-spectrum β-lactamases (ESBLs), 

and carbapenemases [10–13]. ESBLs are typically plasmid-encoded, and genes like blaSHV-2 and blaTEM-3 have been 

identified in K. pneumoniae [14, 15], representing mutated forms carried by mobile genetic elements [15]. Clavulanic 

acid can inhibit ESBL activity, particularly against carbapenems, leading to the classification of these enzymes as 

“extended-spectrum.” Among ESBLs, CTX-M-type has increasingly replaced TEM and SHV types due to the ease of 

gene acquisition through plasmids and transposons. 
Moreover, horizontal gene transfer has facilitated the spread of other ESBL genes, such as blaPER, blaSFO, blaTLA, 

blaOXA, blaGES, blaVEB, and blaKLUC-5 [16]. Carbapenems have traditionally been the drugs of choice for treating 



The Journal Biomedical and Biopharmaceutical Research(e-issn:21822379|p-

issn:21822360) is licensed under a Creative Commons Attribution 4.0 

International License.  

 

656 

 

infections caused by ESBL-producing bacteria [14]. AmpC β-lactamases, in contrast, confer resistance to a broad range 

of antibiotics including first- to third-generation cephalosporins, cephamycins, and β-lactamase inhibitors [12]. Over 40 

different AmpC variants have been identified, many of which can spread rapidly across bacterial strains through plasmid-

mediated transfer [14]. 

 

2.1.3 Bacterial Influx 

The outer membrane of Klebsiella pneumoniae is rich in proteins known as porins, which play a crucial role in regulating 

the movement of molecules across the membrane by forming channel-like structures [17]. These channels allow small, 

hydrophilic molecules—typically less than 600 Da in size—such as β-lactams and fluoroquinolones, to pass through the 

lipid bilayer [17]. In addition to facilitating molecular transport, porins act as receptors for bacteriocins and 

bacteriophages, thus playing a protective role for the bacterial cell [18]. Furthermore, these pore-forming proteins 

contribute to the pathogen’s virulence by assisting in adhesion, invasion, and resistance to host serum defenses [18]. 

In strains producing extended-spectrum β-lactamases (ESBLs), the absence or loss of porins may reduce antibiotic entry 

and promote the selection of other resistance mechanisms [19]. Under host-like conditions, porins in K. pneumoniae also 

help stabilize the outer membrane and provide resistance against immune defenses such as defensins and other 

antimicrobial peptides [20]. Changes in the type, expression level, or functional activity of porins can significantly impair 

drug uptake by the bacterial cell [20]. Key porins involved in intrinsic resistance in K. pneumoniae include LamB, 
OmpK26, PhoE, OmpK35, OmpK36, and KpnO [7]. 

 

2.1.4 Efflux Pump 

Efflux pumps serve as a major bacterial defense mechanism that helps K. pneumoniae adapt to and survive in hostile 

environments, particularly in the presence of antibiotics. These membrane-bound transport systems actively expel 

antimicrobial agents out of the bacterial cell, thereby lowering the intracellular concentration of drugs and contributing to 

antibiotic resistance [21–23]. Resistance may arise due to overproduction of efflux pumps in response to increased drug 

levels or due to mutations that enhance pump efficiency [24]. 

Genome sequencing has revealed that K. pneumoniae carries over 30 genes or operons encoding multidrug resistance 

(MDR) efflux systems on its chromosome [25]. These include members of several families such as the major facilitator 

superfamily (MFS), resistance-nodulation-division (RND), small multidrug resistance (SMR), and multidrug and toxic 
compound extrusion (MATE) systems [20]. Among them, the RND family plays a key role in both intrinsic and acquired 

antibiotic resistance. 

Two proteins, TolC and AcrA, are known to interact with multiple efflux systems in both the RND and MFS families, 

showcasing their broad compatibility [26]. The most well-characterized efflux pump in K. pneumoniae is the AcrAB-

TolC system. This complex is responsible for the active, energy-dependent expulsion of various antibiotics from the cell 

[20]. AcrAB-TolC can handle both negatively and positively charged substrates, requiring only a hydrophobic region to 

insert the drug into the phospholipid membrane for transport [20]. This pump effectively exports multiple antibiotic 

classes, including β-lactams, macrolides, fluoroquinolones, and tetracyclines [20]. 

 

2.1.5 Biofilm Formation 

Klebsiella pneumoniae has a strong ability to form biofilms, a process in which surface structures like capsules and pili 

are significantly involved [21]. Biofilms create a protective environment that limits antibiotic penetration by reducing 
bacterial growth rates, supporting the survival of persister cells, and facilitating the exchange of genetic material [21]. 

These biofilms form when bacteria adhere to either living or non-living surfaces and produce an extracellular polymeric 

matrix composed of polysaccharides, proteins, and extracellular DNA [22]. 

This matrix acts as a barrier to osmotic pressure and contributes to the organism's resistance to antimicrobial agents. In 

K. pneumoniae, biofilm formation has been shown to decrease susceptibility to several antibiotics, including gentamicin, 

ampicillin, and ciprofloxacin [8]. Furthermore, biofilm development has also been associated with the emergence of 

resistance to colistin, a last-resort antibiotic [23]. 

 

2.1.6 Acquired Resistance 

β-lactam antibiotics are widely used for the treatment of Klebsiella pneumoniae infections. However, in cases involving 

multidrug-resistant or prolonged infections caused by K. pneumoniae, alternative antibiotics become necessary. 
Unfortunately, resistance can also emerge against these alternatives during clinical use. Table 2 outlines the key 

mechanisms of acquired resistance in K. pneumoniae. 

Rather than arising mainly from chromosomal mutations, resistance in K. pneumoniae is largely driven by horizontally 

acquired antimicrobial resistance (AMR) genes. These genes are typically carried on plasmids but may also be 

incorporated into the bacterial chromosome. 
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Table 2. Acquired Mechanisms of Antibiotic Resistance in K. pneumoniae 

Resistance Genes Associated 

Antibiotic 

Class 

References 

bla genes (blaSHV, blaTEM, blaCTX, blaKLUC-5, blaSFO, blaGES, 

blaPER, blaVEB, blaTLA, blaKPC, blaNDM, blaVIM, blaIMP, blaOXA, 

blaCMY, blaDHA, blaFOX, blaMOX), and others including aac, aph, ant, 
AcrAB-TolC, kpnEF, and KpnO 

β-lactam 

antibiotics 

[8, 32, 33, 

40, 41] 

AcrAB-TolC, OqxAB, RarA, RamA, RamR, AcrR, rpsJ, 16S rRNA 

methylase, and tetA 

Tigecycline [7] 

DNA gyrase, topoisomerase IV, mpK36, acrAB, kdeA, OqxAB, and aa(6’)-
Ib-cr 

Quinolones [7] 

phoPQ, pmrA, pmrD, mcr-1, and mgrB Polymyxins [7] 

Fos Fosfomycin [7] 

2.1.7 Carbapenem Resistance 

The extensive use of carbapenems has been driven by the increasing prevalence of ESBL-producing K. pneumoniae, 

largely due to selective pressure. Among the most concerning mechanisms of multidrug resistance are carbapenemases 

encoded on plasmids. The serine-based class A β-lactamase known as KPC (Klebsiella pneumoniae carbapenemase) is 

the most common and clinically threatening carbapenemase. This enzyme is linked with the clonal group CG258, 

particularly the ST258 and ST11 strains. ST258 is more commonly found in Europe and the Americas, while ST11 is 
widespread in Asia. 

The blaKPC gene is mobilized by the Tn4401 transposon, which facilitates its integration into other plasmids and 

supports clonal spread. The global dissemination of such resistance genes has led to high mortality rates and therapeutic 

challenges in managing carbapenemase-producing Enterobacteriaceae. Notably, most β-lactamase inhibitors are 

ineffective against KPC, complicating treatment. 

Additionally, resistance is further intensified by the chromosomal integration of carbapenemase genes initially present on 

plasmids. This adaptability makes CRKP (carbapenem-resistant K. pneumoniae) a major clinical concern. 

K. pneumoniae can also spread AmpC-type cephalosporinase enzymes by acquiring β-lactamase genes on mobile 

plasmids. The presence of blaAmpC, as well as mechanisms like gene overexpression or mutations enhancing efflux 

(similar to blaACT-1), contributes to β-lactam resistance. Increased gene copy numbers or strong promoters on plasmids 

facilitate high expression, resulting in carbapenem resistance. Some K. pneumoniae isolates may harbor multiple β-
lactamase genes—such as SHV, AmpC, and KPC—which together heighten resistance. Although enzymes like VIM, 

NDM, and IMP do not independently confer resistance to aztreonam, when co-expressed with ESBL or AmpC, they can 

lead to resistance even against this drug. 

 

2.1.8 Aminoglycoside Resistance 

Resistance to aminoglycosides in K. pneumoniae is often mediated by plasmid-borne genes from the armA family. While 

drug-modifying enzymes can reduce the activity of aminoglycosides, 16S rRNA methylases provide broad resistance to 

nearly all drugs in this class. 

Resistance can also be influenced by chromosomal changes, including mutations affecting the AcrAB-TolC and KpnEF 

efflux systems, or deletions of the KpnO outer membrane protein. These changes impair membrane permeability. For 

instance, strains with altered efflux pumps show high resistance to tobramycin and gentamicin, while KpnO deletion 

leads to increased resistance to vancomycin and moderate resistance to streptomycin. This suggests that aminoglycosides 
rely on specific membrane channels to enter the cell. Loss of the KpnO protein has also been associated with resistance 

to tobramycin, streptomycin, and spectinomycin. 

 

2.1.9 Tetracycline Resistance 

Tigecycline, a next-generation tetracycline antibiotic, exhibits broad-spectrum activity against ESBL-producing bacteria 

[37]. Resistance to tigecycline primarily involves chromosomally encoded mechanisms, including efflux pumps like 

OqxAB, AdeABC, mutated Tet(A), KpgABC, and alterations in ribosomal proteins. These mechanisms impact cell 

membrane permeability and ribosomal binding sites [14]. The rpsJ gene, which encodes ribosomal protein S10—part of 

the 30S ribosomal subunit—lies near the tigecycline and tetracycline binding site. In one of three resistant K. 

pneumoniae strains, a point mutation in the rpsJ gene was identified near the tigecycline binding site on the 30S subunit 

[38]. This suggests that modifications in the S10 protein might represent a novel resistance pathway. Ribosomal proteins 
S3, S13, and S10 are located near the tetracycline binding site, with S3 being crucial for maintaining structural integrity 

[39]. Structural changes in S3 could also contribute to tigecycline resistance. Studies indicate that rpsJ mutations can 

confer resistance without involving efflux mechanisms [14]. 
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2.1.10 Quinolone Resistance 

Quinolones function by inhibiting bacterial topoisomerases, thereby blocking DNA replication [40]. Resistance in K. 

pneumoniae arises through mutations in target genes, upregulation of multidrug efflux pumps, and alterations in involved 

enzymes and proteins [40]. Chromosomally mediated resistance includes modifications to DNA gyrase and 
topoisomerase IV, the primary quinolone targets. The OqxAB efflux pump, often encoded on plasmids, contributes to 

quinolone resistance in various bacteria [41]. Additional plasmid-mediated resistance mechanisms in Enterobacteriaceae 

include proteins that shield DNA gyrase and topoisomerase IV from quinolones. A notable resistance gene, aac(6’)-Ib-cr, 

modifies quinolones and other substrates, reducing their efficacy [42]. Recently, this gene has also been detected on the 

chromosome. Its expression promotes chromosomal mutations that lead to low to moderate quinolone resistance [41]. 

 

2.1.11 Resistance to Other Antibiotics 

Resistance to polymyxins in K. pneumoniae is typically due to mutations in regulatory genes like mgrB, which 

modulates lipid A synthesis—polymyxin’s bacterial target—thereby decreasing drug affinity [43–45]. While the mcr-1 

gene is uncommon in K. pneumoniae bloodstream infections in China, it is frequently found in E. coli, and the first U.S. 

case was reported in 2016 [46]. 

Fosfomycin, an older antibiotic being repurposed for treating multidrug-resistant infections, is facing rising resistance. 
Mechanisms include overexpression or amino acid substitutions in MurA, decreased or absent expression of transporters 

GlpT and UhpT, and presence of the fos gene encoding a glutathione S-transferase that deactivates fosfomycin [48]. The 

fosA3 gene has been identified as a major contributor to fosfomycin resistance in carbapenem-resistant K. pneumoniae 

(CRKp). Its plasmid-mediated transfer is commonly seen in hospital settings [49]. In fosfomycin-resistant CRKp strains 

lacking fosA3, mutations in MurA or the glpT transporter were observed [49]. 

 

2.1.12 Potential Drug Targets in K. pneumoniae 

The growing threat of multidrug-resistant and hypervirulent K. pneumoniae strains, alongside diminishing antibiotic 

effectiveness, underscores the urgent need for new treatment strategies [50]. Novel drug targets can be identified using 

whole-genome sequencing and subtractive genomics to exclude human-homologous proteins, minimizing cross-

reactivity and side effects [51]. Tools like BLASTp and BLAT help identify pathogen-specific proteins, while databases 
of essential genes and KEGG pathway analyses assist in pinpointing critical survival-related pathways [52, 53]. 

Promising targets often participate in essential biosynthetic processes such as peptidoglycan, fatty acid, LPS, and purine 

nucleotide synthesis. 

Enzymes FabB, FabI, and FabH, integral to fatty acid biosynthesis, are attractive drug targets. FabI is especially 

promising for antibacterial drug development, catalyzing the reduction of enoyl-ACP during fatty acid elongation [54]. 

FabB facilitates elongation by incorporating malonyl-ACP-derived carbon atoms into acyl chains [55]. FabH initiates 

fatty acid synthesis by transferring acetyl-CoA to malonyl-ACP and regulates the type of fatty acids synthesized [56, 57]. 

Additionally, LpxA, LpxB, LpxC, and LpxD—enzymes involved in LPS biosynthesis—are also important drug targets 

[58, 59]. The MurG and MurF enzymes are essential for peptidoglycan synthesis and cell wall assembly [60, 61]. 

Aspartate semialdehyde dehydrogenase, crucial for synthesizing several amino acids (lysine, threonine, methionine, 

homoserine), also serves as a viable target. 

SecA, a membrane-associated ATPase, is essential for Sec-dependent protein translocation. It forms a complex with 
SecYEG and YajC, playing a key role in secretion of proteins and virulence factors [62]. Its membrane localization 

makes it accessible to inhibitors without needing cytoplasmic entry [63]. 

Other potential targets include histidine kinase EvgS from the two-component system EvgS/EvgA, which mediates acid 

and drug resistance in E. coli [64, 65]. Upon mild acidification, EvgS phosphorylates EvgA, activating acid-resistance 

genes. TolC, involved in exporting antibiotics, toxins, and dyes, supports bacterial survival by enabling efflux of harmful 

substances [65, 66]. The two-component sensor kinase QseC, activated by host hormones like epinephrine and 

norepinephrine, also presents a compelling target for novel therapies [67]. 

 

CONCLUSION 
Klebsiella pneumoniae poses a significant and growing threat to global health due to its multifaceted antibiotic resistance 

mechanisms, including enzyme production, porin loss, efflux pumps, and biofilm formation. The rise of multidrug-
resistant and carbapenem-resistant strains severely limits treatment options and contributes to high morbidity and 

mortality. Compounded by a slowdown in new antibiotic development, there is an urgent need for continued research into 

the molecular basis of resistance and innovative therapeutic strategies. Understanding these resistance mechanisms is 

critical to developing effective drugs and managing infections caused by this formidable pathogen. 
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