Biomedical and Biopharmaceutical Research

Abbreviation: Biomed. Biopharm. Res. Volume: 12: Issue: 01 | Year: 2015

Page Number: 12-21

Assessment of correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients in a tertiary care centre

Dr Sarkar Sougat Sourendra

Assistant Professor department of pharmacology Alluri Sitarama Raju Academy of Medical Sciences Eluru

Corresponding Author

Dr Sarkar Sougat Sourendra

Assistant Professor department of pharmacology Alluri Sitarama Raju Academy of Medical Sciences Eluru

Article Received:01-01-2015
Article Accepted:20-01-2015

©2015 Biomedical and Biopharmaceutical Research. This is an open access article under the terms of the Creative Commons Attribution4.0 International License.

ABSTRACT

Hepatic encephalopathy (HE) is a neurometabolic syndromecharacterized by impaired brain function in patients with decompensated cirrhosis.¹⁻³ The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndromeMagnesium is an essential component ofhuman body and other mammals, whose role in livercirrhosis and its complications is still a matter ofresearch. There are contrary reports about theirserum concentrations in patients with liver cirrhosis. Magnesium is associated with more than 300enzymatic reactions involving energy metabolismand protein and nucleic acid synthesis Aim: To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients **Objectives:** To study the serum electrolyte levels in hepatic encephalopathy in cirrhotic patientsTo assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients) resulta The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were $134.6 \pm 3.64.0 \pm 0.8$, 8.8 ± 1.3 , 95.6 ± 8.9 , 22.3 ± 5.7 and 1.2 ± 0.2 mEq/L, respectively. (Table No. 10) No correlation w **. Correlation is significant at the 0.01 level (2-tailed). Correlation is significant at the 0.05 level (2-tailed). In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients conclusions In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients

Keywords: Serum Magnesium, Hepatic Encephalopathy, Liver Cirrhosis

INTRODUCTION

Hepatic encephalopathy (HE) is a neurometabolic syndromecharacterized by impaired brain function in patientswith decompensated cirrhosis. ¹⁻³ The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndrome. ³⁻⁵

HE may be clinically apparent in as many as one third of cirrhotic patients and, if rigorously tested, up to two thirds have some degree of mild or subclinical HE.⁶

Ammonia plays a central role in HE asit crosses the blood brain barrier causing neurological insultmediated by a decrease in excitatory neurotransmission.⁷ Multiple precipitating factors for HE has been recognized and if controlled, may alter the disease acuity

and improve mental status.⁸ The most common precipitating factors for HE includes dehydration, acute kidney injury, non-adherence to medications (particularly non-absorbable disaccharides), constipation and infections.⁹⁻¹¹

Magnesium is essential for many intracellular processes and structures in the human body, such as muscle contraction and relaxation, neuronal signal transduction, and conduction of the action potential in the myocardium ¹². Most of the body's magnesium is intracellular and less than 1% of the total is found in serum. Therefore, significant magnesium deficiency might be present even though the serum magnesium level is withinnormal limits. Magnesium deficiency has been associated with several systemic conditions, including metabolic syndrome, cerebrovascular diseases, malignancies, bacterial and fungal infections, osteoporosis, and liver cirrhosis ¹³⁻¹⁶. Several studies demonstrated a higher prevalence of magnesium deficiency in patients with liver cirrhosis compared to the general population ¹⁷⁻²⁰. Suggested

The Journal Biomedical and Biopharmaceutical Research (e-issn:21822379 | p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

pathogenesisincludes decreased magnesium intake, fat malabsorption, diuretic use, renal tubular acidosis, and increased serum levelsof growth hormone and glucagon²⁰. Patients with alcoholic liver cirrhosis were found to havedecreased muscle mass and strength as well as lower magnesium potassium content in muscle tissue as compared to an agematched control group^{21,22}. Magnesium levels werefound to decrease as the severity of liver disease progressed (according to CHILD score) ²¹, and treatment with spironolactoneincreased muscle strength and electrolytes ^{21,23}.

Magnesium is an essential component ofhuman body and other mammals, whose role in livercirrhosis and its complications is still a matter ofresearch. There are contrary reports about their concentrations in patients with liver cirrhosis. Magnesium is associated with more than 300

enzymatic reactions involving energy metabolismand protein and nucleic acid synthesis^{24,25}. Magnesium also involved in immunoglobulinsynthesis, immune cell adherence, antibodydependentcytolysis, GM lymphocyte binding, Thelper B-cell adherence and additional responses²⁶. Only 0.3% of total body magnesium exists inserum²⁷⁻²⁹.

In spite of all this knowledge regardingimportance of magnesium in human body,very little is known about magnesiummetabolism in diseased states, in comparison to theextensive studies of calcium, sodium and potassiumetc. Hence, the present study is planned to assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients

AIM & OBJECTIVES

Aim: To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients **Objectives:**

- 1. To study the serum electrolyte levels in hepatic encephalopathy in cirrhotic patients
- 2. To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients

MATERIAL AND METHODS

Study design: Cross sectional analytical

Study population: Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting Noor hospital

Study period:2 years **Sample size:**20

Ethical clearance: The study will be initiated after approval of Institutional Ethical committee.

Selection criteria:Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting **Noor hospital** will be subjected to the following inclusion and exclusion criteria.

Inclusion criteria:

- 1. Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting NOOR HOSPITAL
- 2. Patients of age 18 years or above of either gender.
- 3. Patients/Patients legally acceptable representative willing to give written informed consent to participate in the study.

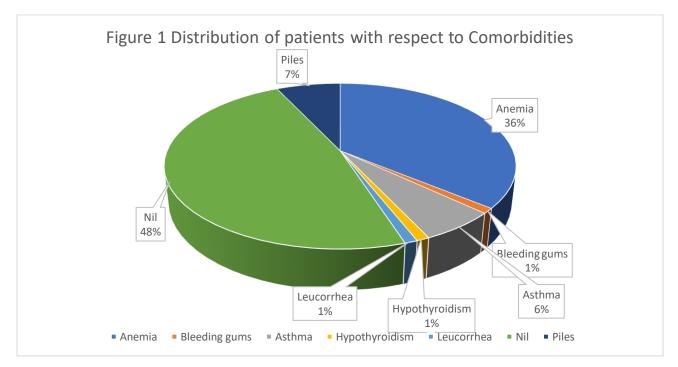
Exclusion criteria:

- 1. Patients with active cancer.
- 2. Special populations such as pregnant women.
- 3. Individuals with mental retardation, dementia.
- 4. Current treatment with magnesium supplements.
- 5. Renal failure patients

Patients who will satisfy the above inclusion and exclusion criteria will be included in the study. Written informed consent will be taken from all patients.

Study procedure:

After taking consent, patient's demographic data will be collected. Data for the following variables will be collected: The following information regarding the patients will be collected:


S. No.	Variable	Method of	Measurement scale	Descriptive statistics		
		measurement				
1.	Age	Interview	Ratio	Mean, S.D.		
2.	Gender	Interview	Nominal	Frequency, Proportion		
3.	Occupation	Interview	Nominal	Frequency, Proportion		
4.	Comorbidities	Examination	Ratio	Mean, S.D.		
5.	Causes of liver cirrhosis	Record	Nominal	Frequency, Proportion		
6.	Serum Electrolytes Investigation		Ratio	Mean, S.D.		
7.	Liver function test	Investigation	Ratio	Mean, S.D.		
8.	Glasgow coma scale	Examination	Ordinal	Frequency, Proportion		

The Journal Biomedical and Biopharmaceutical Research (e-issn:21822379 | p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

RESULTS

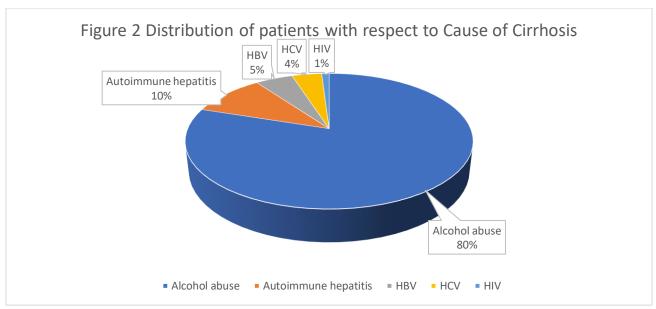

In the present study, 100 patients were included. All the patients were males. The mean Age of patients was 45.8 13.3 years.

Table 1 Distribution	on of patients with resp	ect to Comorbid	ities		
		Frequency	Percent		
	Anemia	36	36		
	Bleeding gums	1	1.0		
	Asthma	6	6.0		
Comorbidity	Hypothyroidism	1	1.0		
	Leucorrhea	1	1.0		
	Nil	48	48.0		
	Piles	7	7.0		
	Total	100	100.0		

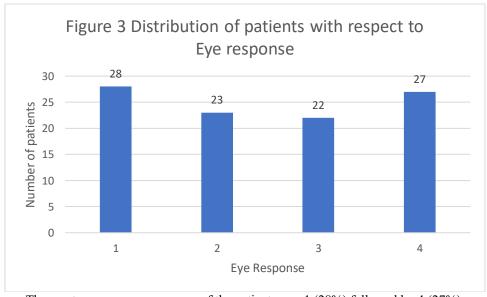
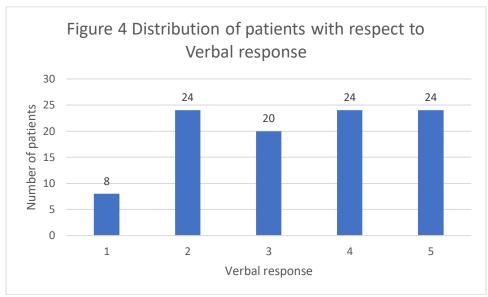
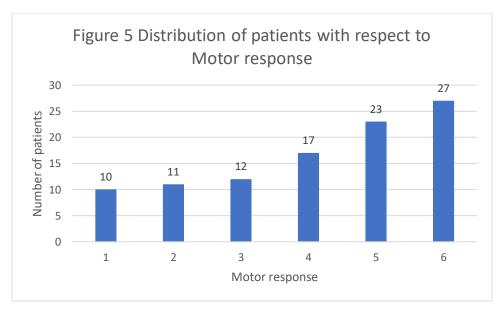

52 patients suffered from comorbidities. Most of the patients were suffering from anemia (36), followed by piles (7) and asthma (6).

Table 2 Distribu	tior	of patients with respect to C	ause of Cirrhosis				
			Frequency Percent				
		Alcohol abuse	80	80.0			
Cause Cirrhosis	of]	Autoimmune hepatitis	10	10.0			
		HBV	5	5.0			
		HCV	4	4.0			
		HIV	1	1.0			
		Total	100	100.0			

The most common cause of Cirrhosis was Alcohol abuse (80%) followed by Autoimmune hepatitis (10%) and HBV infection (5%).


Table 3 Distribution	Table 3 Distribution of patients with respect to Eye response									
		Frequency	Percent							
	1	28	28.0 23.0							
	2	23								
Eye response	3	22	22.0							
	4	27	27.0							
	Total	100	100.0							

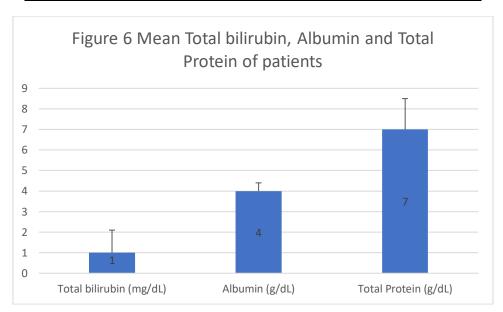
The most common eye response of the patients was 1 (28%) followed by 4 (27%).


Table 4 Distribution	Table 4 Distribution of patients with respect to Verbal response									
		Frequency	Percent							
	1	8	8.0							
	2	24	24.0							
V11	3	20	20.0							
Verbal response	4	24	24.0							
	5	24	24.0							
	Total	100	99.0							

The Journal Biomedical and Biopharmaceutical Research (e-issn: 21822379 | p-issn: 21822360) is licensed under a Creative Commons Attribution 4.0 International License.

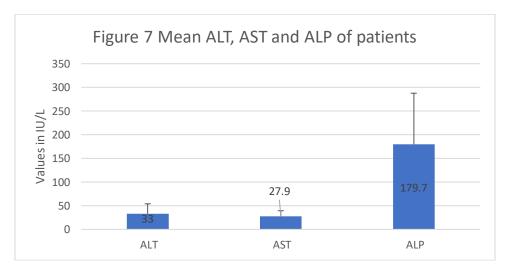
The most verbal response of the patients was 2, 4 and 5 (24% each).

Table 5 Distribution	on of patier	its with respect to	o Motor response
		Frequency	Percent
	1	10	10.0
	2	11	11.0
	3	12	12.0
Motor response	4	17	17.0
•	5	23	23.0
	6 27		27.0
	Total	100	100.0



The most common Motor response of the patients was 6 (27%) followed by 5 (23%) and 4 (17%). The mean Glasgow coma scale of the patients was 9.9 ± 1.8

Table 6 Mean Total bilirubin, Albumin and Total Protein of patients


The Journal Biomedical and Biopharmaceutical Research (e-issn:21822379|p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

	Mean	Std. Deviation
Total bilirubin (mg/dL)	1.0	1.1
Albumin (g/dL)	4.0	0.4
Total Protein (g/dL)	7.0	1.5

The mean Total bilirubin, Albumin and Total Protein of the patients was $1.0 \pm 1.1 \text{mg/dL}$, $4.0 \pm 0.4 \text{g/dL}$ and $7 \pm 1.5 \text{g/dL}$, respectively.

Table 7 Mean ALT, AST and ALP of patients										
Mean Std. Deviation										
ALT (IU/L)	33.0	21.0								
AST (IU/L)	27.9	11.5								
ALP (IU/L)	179.7	107.9								

The mean ALT, AST and ALP of the patients was 33.0 ± 21 mg/dL, 27.9 ± 11.5 g/dL and 179.7 ± 107.9 IU/L, respectively.

Table 8 Mean S. Urea, S. Creatinine and S. Uric acid of patients									
Mean Std. Deviation									
S. Urea (mg/dL)	43.4	12.1							
S. Creatinine (mg/dL)	1.5	0.3							
S. Uric acid (mg/dL)	5.6	0.9							

The Journal Biomedical and Biopharmaceutical Research (e-issn: 21822379 | p-issn: 21822360) is licensed under a Creative Commons Attribution 4.0 International License.

The mean S. Urea, S. Creatinine and S. Uric acid of the patients was 43.4 ± 12.1 mg/dL, 1.5 ± 0.3 mg/dL and 5.6 ± 0.9 mg/dL, respectively.

Table 9 Mean S. Electrolytesof pat	ients	
	Mean	Std. Deviation
Serum Sodium (mEq/L)	134.6	3.6
Serum Potassium (mEq/L)	4.0	0.8
Serum Calcium (mEq/L)	8.8	1.3
Serum Chloride (mEq/L)	95.6	8.9
Serum Bicarbonate (mEq/L)	22.3	5.7
Serum Magnesium (mEq/L)	1.2	0.2

The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were ± 3.6

 $4.0\pm0.8,~8.8\pm1.3,~95.6\pm8.9,~22.3\pm5.7~and~1.2\pm0.2mEq/L,~respectively.$

		Lance	10 00		J. para				erum electro	S					S	S	Glasgo
		Total bilirubin	Albumin	Total protein	ALT	AST	ALP	S Urea	S Creatinine	Uric Acid	S Sodium	S Potassium	S Calcium	S Chloride	bicarbonat e	Magnesiu m	coma
Total bilirubin	Pearson Correlation	1	.055	038	.172	.091	004	057	.135	.096	069	048	049	003	041	-,125	040
	Sig. (2- tailed)		.585	.710	.087	.370	.965	.574	.180	.342	.496	.637	.627	.979	.684	.216	.691
Albumin	Pearson Correlation	.055	1	170	.293**	.373**	.235	.080	.144	145	.158	.122	012	033	.142	008	04
	Sig. (2- tailed)	.585		.092	.003	.000	.019	.431	.153	.150	.117	.225	.907	.747	.158	.940	.626
Total protein	Pearson Correlation	038	170	1	121	105	248*	.104	.053	086	.063	.082	.277**	062	.087	038	.074
	Sig. (2- tailed)	.710	.092	121	.231	.299	.013	.304	.600	.397	.534	.418	.005	.539	.390	.710	.464
ALT	Pearson Correlation Sig. (2-	.172	.293**	121	1	.773**	.000	.116	.024	.111	022	.023	425"	.022	.059	.114	04
9943885	tailed)	.087	.373**	105	.773**	.000	.437**	.273**	.234*	105	.114	.219"	128	.067	.198*	.184	06
AST	Correlation Sig. (2-	.370	.000	.299	.000	•	.000	.006	.019	.299	.257	.028	.206	.510	.048	.066	.49:
ALD	tailed) Pearson	004	.235*	248*	.612**	.437**	1	.074	.134	.135	005	.066	463**	.055	.268**	.073	06
ALP	Correlation Sig. (2-	.965	.019	.013	.000	.000		.464	.185	.182	.963	.516	.000	.589	.007	.471	.510
S Urea	Pearson	057	.080	.104	.116	.273**	.074	1	.735**	011	.400**	.513**	.397**	.223*	.620**	.054	.162
	Sig. (2- tailed)	.574	.431	.304	.251	.006	.464		.000	.917	.000	.000	.000	.025	.000	.592	.10
S Creatinine	Pearson Correlation	.135	.144	.053	.225*	.234*	.134	.735**	1	.173	.328**	.292**	.149	.087	.325**	012	.06
	Sig. (2- tailed)	.180	.153	.600	.024	.019	.185	.000		.085	.001	.003	.138	.391	.001	.907	.514
SUricAcid	Pearson Correlation	.096	145	086	.111	105	.135	011	.173	1	095	083	220°	145	141	014	.10
	Sig. (2- tailed)	.342	.150	.397	.271	.299	.182	.917	.085		.347	.410	.028	.151	.160	.888	.29
S Sodium	Pearson Correlation	069	.158	.063	022	.114	005	.400**	.328**	095	1	.450**	.215	.185	.394**	.066	07
	Sig. (2- tailed)	.496	.117	.534	.826	.257	.963	.000	.001	.347	450**	.000	.032	.065	.000	.511	.456
S Potassium	Pearson Correlation Sig. (2-	048	.122	.082	.023	.028	.516	.513**	.003	083	.450**	1	.326**	.001	.527**	.092	.924
	tailed) Pearson	049	012	.277"	425**	128	463**	.397**	.149	220°	.215*	.326**	1	.146	.331**	081	.03
S Calcium	Correlation Sig. (2-	.627	.907	.005	.000	.206	.000	.000	.138	.028	.032	.001		.147	.001	.421	.76
SChloride	tailed) Pearson	003	033	062	.022	.067	.055	.223*	.087	145	.185	.315**	.146	1	.433**	.096	.12
ocinoriue .	Correlation Sig. (2-	.979	.747	.539	.828	.510	.589	.025	.391	.151	.065	.001	.147		.000	.344	.21
Sbicarbonate	tailed) Pearson Correlation	041	.142	.087	.059	.198*	.268**	.620**	.325**	141	.394**	.527**	.331**	.433**	1	.089	.06
	Sig. (2- tailed)	.684	.158	.390	.561	.048	.007	.000	.001	.160	.000	.000	.001	.000		.381	.50
SMagnesium	Pearson Correlation	125	008	038	.114	.184	.073	.054	012	014	.066	.092	081	.096	.089	1	05
	Sig. (2- tailed)	.216	.940	.710	.258	.066	.471	.592	.907	.888	.511	.365	.421	.344	.381		.57.
Glasgow coma scale	Pearson Correlation	040	049	.074	045	069	067	.162	.066	.105	075	.010	.030	.126	.067	057	1
	Sig. (2- tailed)	.691	.626	.464	.659	.495	.510	.108	.514	.299	.456	.924	.768	.212	.507	.573	

The Journal Biomedical and Biopharmaceutical Research(e-issn:21822379|p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

DISCUSSION

Hepatic encephalopathy (HE) is a neurometabolic syndromecharacterized by impaired brain function in patientswith decompensated cirrhosis. 1-3 The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndrome. 3-5HE may be clinically apparent in as many as one third of cirrhotic patients and, if rigorously tested, up to two thirds have some degree of mild or subclinical HE.⁶ Ammonia plays a central role in HE asit crosses the blood brain barrier causing neurological insultmediated by a decrease in excitatory neurotransmission.7 Multiple precipitating factors for HE has been recognized and if controlled, may alter the disease acuityand improve mental status8 (Table No. 1) In the present study, 100 patients were included. All the patients were males. The mean Age of patients was 45.8 ± 13.3 years.(Fig. no.1) 52 patients suffered from comorbidities. Most of the patients were suffering from anemia (36), followed by piles (7) and asthma (6). (Table No. 2) The most common cause of Cirrhosis was Alcohol abuse (80%) followed by Autoimmune hepatitis (10%) and HBV infection (5%). Fig. no.3)here our study is in accordance with the study done by Vilstrup H,etal The most common eye response of the patients was 1 (28%) followed by 4 (27%) again here our study is in accordance with the study done by Pantham Getal(Table No. 4) The most verbal response of the patients was 2, 4 and 5 (24% each). (Table No. 5) The most common Motor response of the patients was 6 (27%) followed by 5 (23%) and 4 (17%). The mean Glasgow coma scale of the patients was 9.9 ± 1.8 (Fig. no.6) The mean Total bilirubin, Albumin and Total Protein of the patients was 1.0 ± 1.1 mg/dL, $4.0 \pm$ 0.4g/dL and 7 ± 1.5 g/dL, respectively.(Fig. no.7) The mean ALT, AST and ALP of the patients was 33.0 ± 21 mg/dL, 27.9g/dL, and 27.9g/dL, respectively. ± 11.5 g/dL and 179.7 ± 107.9IU/L, respectively.(Fig. no. 8) The mean S. Urea, S. Creatinine and S. Uric acid of the patients was 43.4 ± 12.1 mg/dL, 1.5 ± 0.3 mg/dL and 5.6 ± 0.9 mg/dL, respectively. (Fig. no. 9b) The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were 8.8±1.3, 95.6±8.9, 22.3±5.7 and 1.2±0.2mEq/L, respectively. (Table No. 10) No correlation w **. Correlation is significant at the 0.01 level (2-tailed). Correlation is significant at the 0.05 level (2-tailed). In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients most of the studies like the study done by Iwasa M etal and Shechter M. etal are in accordance with us however multicentric studies with larger sample size are required to come to a conclusion Therefore, significant magnesium deficiency might be present even though the serum magnesium level is within normal limits

REFERENCES

- 1. Aldworth G. Hepatic encephalopathy. Ann Clin Biochem 2017; 54: 416.
- 2. Weiss N, Jalan R, Thabut D. Understanding hepatic encephalopathy. Intensive Care Med 2018; 44: 231-4.
- 3. Wijdicks EF. Hepatic Encephalopathy. N Engl J Med 2016;375: 1660-70.
- 4. Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammoniahypothesis: a physiology-driven approach to the treatment ofhepatic encephalopathy. Mayo Clin Proc 2015; 90: 646-58.
- 5. Alsaad AA, Stancampiano FF, Palmer WC, Henry AM, Jackson JK, Heckman MG, Diehl NN, Keaveny AP. Serum Electrolyte Levels and Outcomes in Patients Hospitalized with Hepatic Encephalopathy. Annals of hepatology. 2018 Sep 13;17(5):836-42.
- 6. Shaker M, Carey WD. Hepatic encephalopathy.
- 7. Tamaoki S, Suzuki H, Okada M, Fukui N, Isobe M, Saito T. Development of an experimental rat model of hyperammonemic encephalopathy and evaluation of the effects of rifaximin. Eur J Pharmacol 2016; 779: 168-76.
- 8. Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, Weissenborn K, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014; 60: 715-35.
- 9. Han KH. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. Electrolyte Blood Press 2011; 9: 45-9.
- 10. Iwasa M, Sugimoto R, Mifuji-Moroka R, Hara N, Yoshikawa K, Tanaka H, Eguchi A, et al. Factors contributing to the development of overt encephalopathy in liver cirrhosis patients. Metab Brain Dis 2016; 31: 1151-6.
- 11. Pantham G, Post A, Venkat D, Einstadter D, Mullen KD. A New Look at Precipitants of Overt Hepatic Encephalopathy in Cirrhosis. Dig Dis Sci 2017; 62: 2166-73.
- 12. Swaminathan R. Disorders of magnesium metabolism. CPD Bull Clin Biochem 2000; 2: 3-12.
- 13. Musso CG. Magnesium metabolism in health and disease. Int Urol Nephrol 2009; 41: 357-62.
- 14. Johnson S. The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 2001; 56: 163-70.
- 15. Arnaud MJ. Update on the assessment of magnesium status. Br J Nutr 2008; 99 (Suppl 3): S24-36.
- 16. Cohen L. Physiological assessment of magnesium status in humans: a combination of magnesium load retention and renal excretion. IMAJ 2000; 938-9.
- 17. Shechter M. Body magnesium--the spark of life. Harefuah 2011; 150: 41-5, 67 [Hebrew].
- 18. Hashizume N, Mori M. An analysis of hypermagnesemia and hypomagnesemia. Jpn J Med 1990; 29: 368-72.

- 19. Pasqualetti P, Casale R, Colantonio D, et al. Serum levels of magnesium in hepatic cirrhosis. Quad Sclavo Diagn 1987; 23: 12-7.
- 20. Rocchi E, Borella P, Borghi A, et al. Zinc and magnesium in liver cirrhosis. Eur J Clin Invest 1994; 24: 149-55.
- 21. Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dørup I. Muscle strength, Na,K-pumps, magnesium and potassium in patients with alcoholic liver cirrhosis -- relation to spironolactone. J Intern Med 2002; 252: 56-63.
- 22. Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dørup I. Decreased muscle strength and contents of Mg and Na,K-pumps in chronic alcoholics occur independently of liver cirrhosis. J Intern Med 2003; 253: 359-66.
- 23. BOT TT, Ruth Hadary MD, Lotan S. Magnesium deficiency and minimal hepatic encephalopathy among patients with compensated liver cirrhosis.
- 24. Weisinger JR, Bellorin Front E. "Magnesium and phosphorus". Lancet; 352: 391-396. (1998)
- 25. Henry JB., Clinical Diagnosis and Management, 17th ed., W.B. Saunder Co. Philadelphia, 157 (1984)
- 26. Galland L. "Magnesium and immune function: an overview. Magnesium" 7(5): 290-299 (1988)
- 27. Elin R J. Magnesium: the fifth but forgotten electrolyte. Amer J Clin Pathol.; 102: 616-629 (1994).
- 28. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta.; 294 (1-2): 1-26 (2000)