

Assessment of correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients¹Dr E Priyatham, ²Dr Varun Bagadi¹Assistant Professor, General Medicine, Prathima institute of medical sciences Nagunur Road ,Karimnagar,Telangana-505415²Assistant Professor, General Medicine, Vishwabharathi Medical College & General Hospital RT Nagar Kurnool AP**Corresponding Author****Dr E Priyatham**

Affiliation missing

Article Received:25-01-2020

Article Accepted:18-02-2020

©2020 *Biomedical and Biopharmaceutical Research*. This is an open access article under the terms of the Creative Commons Attribution4.0 International License.

ABSTRACT

Hepatic encephalopathy (HE) is a neurometabolic syndrome characterized by impaired brain function in patients with decompensated cirrhosis.¹⁻³ The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndrome. Magnesium is an essential component of human body and other mammals, whose role in liver cirrhosis and its complications is still a matter of research. There are contrary reports about their serum concentrations in patients with liver cirrhosis. Magnesium is associated with more than 300 enzymatic reactions involving energy metabolism and protein and nucleic acid synthesis. **Aim:** To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients. **Objectives:** To study the serum electrolyte levels in hepatic encephalopathy in cirrhotic patients. To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients. **resulta** The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were $134.6 \pm 3.64.0 \pm 0.8$, 8.8 ± 1.3 , 95.6 ± 8.9 , 22.3 ± 5.7 and 1.2 ± 0.2 mEq/L, respectively. (Table No. 10) No correlation was **. Correlation is significant at the 0.01 level (2-tailed). Correlation is significant at the 0.05 level (2-tailed). In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients. **conclusions** In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients.

Keywords: Serum Magnesium, Hepatic Encephalopathy, Liver Cirrhosis**INTRODUCTION**

Hepatic encephalopathy (HE) is a neurometabolic syndrome characterized by impaired brain function in patients with decompensated cirrhosis.¹⁻³ The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndrome.³⁻⁵

HE may be clinically apparent in as many as one third of cirrhotic patients and, if rigorously tested, up to two thirds have some degree of mild or subclinical HE.⁶

Ammonia plays a central role in HE as it crosses the blood brain barrier causing neurological insult mediated by a decrease in excitatory neurotransmission.⁷ Multiple precipitating factors for HE have been recognized and if controlled, may alter the disease acuity

and improve mental status.⁸ The most common precipitating factors for HE include dehydration, acute kidney injury, non-adherence to medications (particularly non-absorbable disaccharides), constipation and infections.⁹⁻¹¹

Magnesium is essential for many intracellular processes and structures in the human body, such as muscle contraction and relaxation, neuronal signal transduction, and conduction of the action potential in the myocardium.¹² Most of the body's magnesium is intracellular and less than 1% of the total is found in serum. Therefore, significant magnesium deficiency might be present even though the serum magnesium level is within normal limits. Magnesium deficiency has been associated with several systemic conditions, including metabolic syndrome, cerebrovascular diseases, malignancies, bacterial and fungal infections, osteoporosis, and liver cirrhosis.¹³⁻¹⁶ Several studies demonstrated a higher prevalence of magnesium deficiency in patients with liver cirrhosis compared to the general population.¹⁷⁻²⁰ Suggested pathogenesis includes decreased magnesium intake, fat malabsorption, diuretic use, renal tubular acidosis, and increased serum levels of growth hormone and glucagon.²⁰ Patients with alcoholic liver cirrhosis were found to have decreased muscle mass and strength as well as lower magnesium and potassium content in muscle tissue as compared to an age-matched control group.^{21,22} Magnesium levels were found to decrease as the severity of liver disease progressed (according to Child score)²¹, and treatment with spironolactone increased muscle strength and electrolytes.^{21,23}

Magnesium is an essential component of human body and other mammals, whose role in liver cirrhosis and its complications is still a matter of research. There are contrary reports about their serum concentrations in patients with liver cirrhosis. Magnesium is associated with more than 300

enzymatic reactions involving energy metabolism and protein and nucleic acid synthesis^{24,25}. Magnesium is also involved in immunoglobulin synthesis, immune cell adherence, antibody-dependent cytotoxicity, GM lymphocyte binding, Helper T-cell adherence and additional responses²⁶. Only 0.3% of total body magnesium exists in serum²⁷⁻²⁹.

In spite of all this knowledge regarding the importance of magnesium in human body, very little is known about magnesium metabolism in diseased states, in comparison to the extensive studies of calcium, sodium and potassium etc. Hence, the present study is planned to assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients

AIM & OBJECTIVES

Aim: To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients

Objectives:

1. To study the serum electrolyte levels in hepatic encephalopathy in cirrhotic patients
2. To assess the correlation of serum Mg level with hepatic encephalopathy in cirrhotic patients

MATERIAL AND METHODS

Study design: Cross sectional analytical

Study population: Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting **Noor hospital**

Study period: 2 years

Sample size: 20

Ethical clearance: The study will be initiated after approval of Institutional Ethical committee.

Selection criteria: Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting **Noor hospital** will be subjected to the following inclusion and exclusion criteria.

Inclusion criteria:

1. Patients diagnosed with liver cirrhosis with hepatic encephalopathy visiting **NOOR HOSPITAL**
2. Patients of age 18 years or above of either gender.
3. Patients/Patients legally acceptable representative willing to give written informed consent to participate in the study.

Exclusion criteria:

1. Patients with active cancer.
2. Special populations such as pregnant women.
3. Individuals with mental retardation, dementia.
4. Current treatment with magnesium supplements.
5. Renal failure patients

Patients who will satisfy the above inclusion and exclusion criteria will be included in the study. Written informed consent will be taken from all patients.

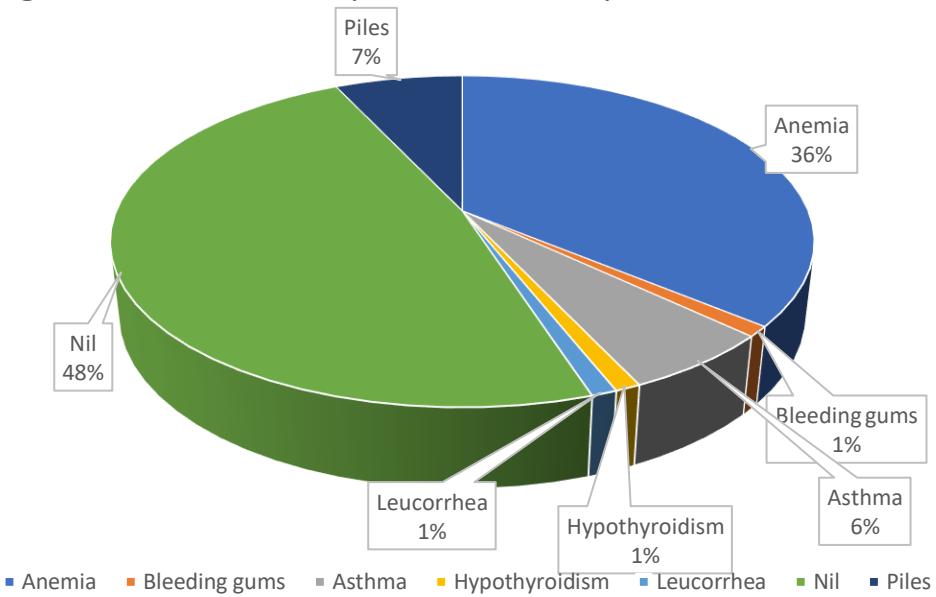
Study procedure:

After taking consent, patient's demographic data will be collected. Data for the following variables will be collected:

The following information regarding the patients will be collected:

S. No.	Variable	Method of measurement	Measurement scale	Descriptive statistics
1.	Age	Interview	Ratio	Mean, S.D.
2.	Gender	Interview	Nominal	Frequency, Proportion
3.	Occupation	Interview	Nominal	Frequency, Proportion
4.	Comorbidities	Examination	Ratio	Mean, S.D.
5.	Causes of liver cirrhosis	Record	Nominal	Frequency, Proportion
6.	Serum Electrolytes	Investigation	Ratio	Mean, S.D.
7.	Liver function test	Investigation	Ratio	Mean, S.D.
8.	Glasgow coma scale	Examination	Ordinal	Frequency, Proportion

RESULTS

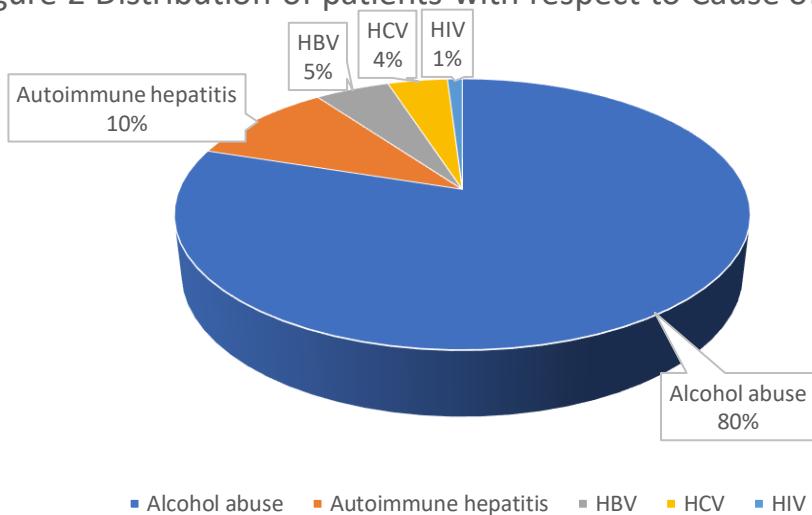

In the present study, 100 patients were included. All the patients were males. The mean Age of patients was 45.8 ± 13.3 years.

The Journal Biomedical and Biopharmaceutical Research (e-issn:21822379 | p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

Table 1 Distribution of patients with respect to Comorbidities

Comorbidity		Frequency	Percent
	Anemia	36	36
	Bleeding gums	1	1.0
	Asthma	6	6.0
	Hypothyroidism	1	1.0
	Leucorrhea	1	1.0
	Nil	48	48.0
	Piles	7	7.0
	Total	100	100.0

Figure 1 Distribution of patients with respect to Comorbidities

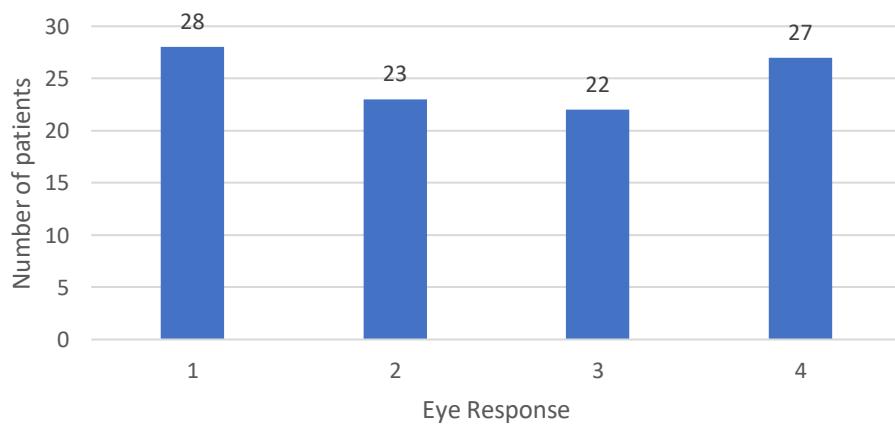


52 patients suffered from comorbidities. Most of the patients were suffering from anemia (36), followed by piles (7) and asthma (6).

Table 2 Distribution of patients with respect to Cause of Cirrhosis

Cause of Cirrhosis		Frequency	Percent
	Alcohol abuse	80	80.0
	Autoimmune hepatitis	10	10.0
	HBV	5	5.0
	HCV	4	4.0
	HIV	1	1.0
	Total	100	100.0

Figure 2 Distribution of patients with respect to Cause of Cirrhosis

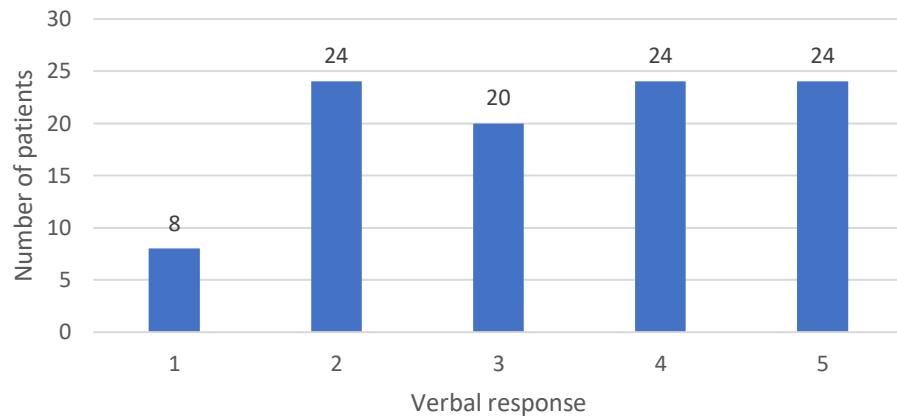


The most common cause of Cirrhosis was Alcohol abuse (80%) followed by Autoimmune hepatitis (10%) and HBV infection (5%).

Table 3 Distribution of patients with respect to Eye response

	Frequency	Percent
Eye response	1	28
	2	23
	3	22
	4	27
	Total	100

Figure 3 Distribution of patients with respect to Eye response

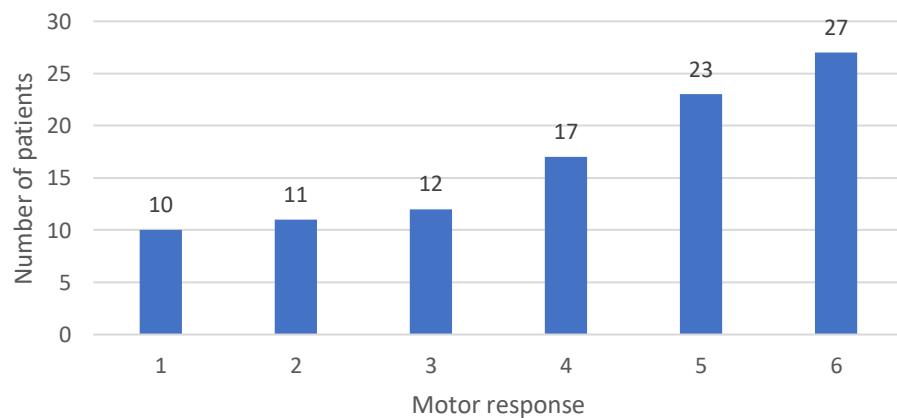


The most common eye response of the patients was 1 (28%) followed by 4 (27%).

Table 4 Distribution of patients with respect to Verbal response

	Frequency	Percent
Verbal response	1	8
	2	24
	3	20
	4	24
	5	24
	Total	100

Figure 4 Distribution of patients with respect to Verbal response



The most verbal response of the patients was 2, 4 and 5 (24% each).

Table 5 Distribution of patients with respect to Motor response

	Frequency	Percent
	1	10.0
Motor response	2	11.0
	3	12.0
	4	17.0
	5	23.0
	6	27.0
	Total	100.0

Figure 5 Distribution of patients with respect to Motor response

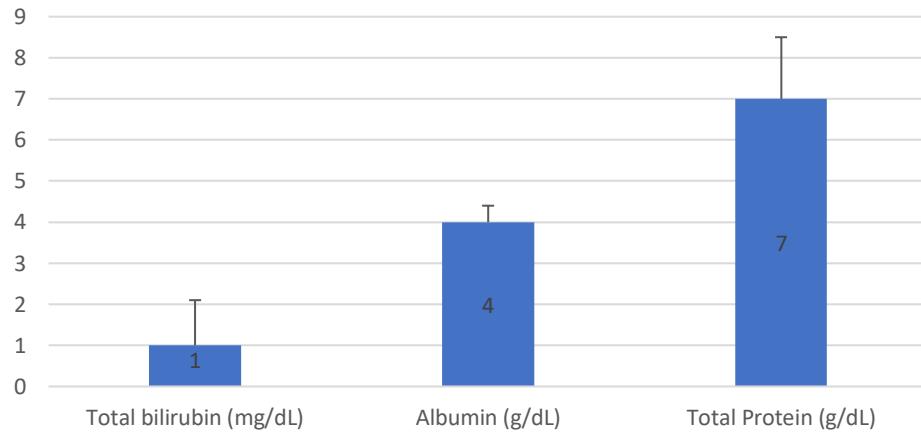
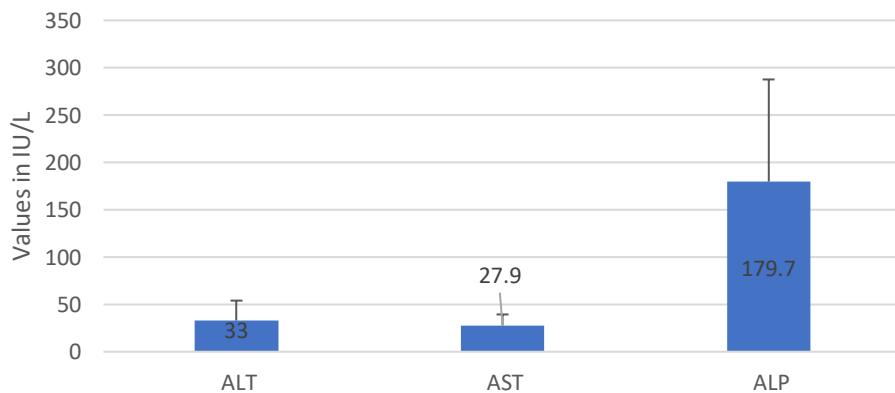

The most common Motor response of the patients was 6 (27%) followed by 5 (23%) and 4 (17%). The mean Glasgow coma scale of the patients was 9.9 ± 1.8

Table 6 Mean Total bilirubin, Albumin and Total Protein of patients

The Journal Biomedical and Biopharmaceutical Research (e-issn:21822379|p-issn:21822360) is licensed under a Creative Commons Attribution 4.0 International License.

	Mean	Std. Deviation
Total bilirubin (mg/dL)	1.0	1.1
Albumin (g/dL)	4.0	0.4
Total Protein (g/dL)	7.0	1.5

Figure 6 Mean Total bilirubin, Albumin and Total Protein of patients



The mean Total bilirubin, Albumin and Total Protein of the patients was 1.0 ± 1.1 mg/dL, 4.0 ± 0.4 g/dL and 7 ± 1.5 g/dL, respectively.

Table 7 Mean ALT, AST and ALP of patients

	Mean	Std. Deviation
ALT (IU/L)	33.0	21.0
AST (IU/L)	27.9	11.5
ALP (IU/L)	179.7	107.9

Figure 7 Mean ALT, AST and ALP of patients

The mean ALT, AST and ALP of the patients was 33.0 ± 21 mg/dL, 27.9 ± 11.5 g/dL and 179.7 ± 107.9 IU/L, respectively.

Table 8 Mean S. Urea, S. Creatinine and S. Uric acid of patients

	Mean	Std. Deviation
S. Urea (mg/dL)	43.4	12.1
S. Creatinine (mg/dL)	1.5	0.3
S. Uric acid (mg/dL)	5.6	0.9

The mean S. Urea, S. Creatinine and S. Uric acid of the patients was 43.4 ± 12.1 mg/dL, 1.5 ± 0.3 mg/dL and 5.6 ± 0.9 mg/dL, respectively.

Table 9 Mean S. Electrolytes of patients

	Mean	Std. Deviation
Serum Sodium (mEq/L)	134.6	3.6
Serum Potassium (mEq/L)	4.0	0.8
Serum Calcium (mEq/L)	8.8	1.3
Serum Chloride (mEq/L)	95.6	8.9
Serum Bicarbonate (mEq/L)	22.3	5.7
Serum Magnesium (mEq/L)	1.2	0.2

The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were 134.6 ± 3.6 , 4.0 ± 0.8 , 8.8 ± 1.3 , 95.6 ± 8.9 , 22.3 ± 5.7 and 1.2 ± 0.2 mEq/L, respectively.

Table 10 Correlation of parameters of LFT, RFT, serum electrolytes and Glasgow coma scale with each other.

		Total bilirubin	Albumin	Total protein	ALT	AST	ALP	S Urea	S Creatinine	S Uric Acid	S Sodium	S Potassium	S Calcium	S Chloride	S bicarbonat e	S Magnesiu m	Glasgow coma scale
Total bilirubin	Pearson Correlation	1	.055	-.038	.172	.091	-.004	-.057	.135	.096	-.069	-.048	-.049	-.003	-.041	-.125	-.040
	Sig. (2-tailed)		.585	.710	.087	.370	.965	.574	.180	.342	.496	.637	.627	.979	.684	.216	.691
Albumin	Pearson Correlation	.055	1	-.170	.293**	.373**	.235*	.080	.144	-.145	.158	.122	-.012	-.033	.142	-.008	-.049
	Sig. (2-tailed)	.585		.092	.003	.000	.019	.431	.153	.150	.117	.225	.907	.747	.158	.940	.626
Total protein	Pearson Correlation	-.038	-.170	1	-.121	-.105	-.248*	.104	.053	-.086	.063	.082	.277**	-.062	.087	-.038	.074
	Sig. (2-tailed)	.710	.092		.231	.299	.013	.304	.600	.397	.534	.418	.005	.539	.390	.710	.464
ALT	Pearson Correlation	.172	.293**	-.121	1	.773**	.612**	.116	.225*	.111	-.022	.023	-.425**	.022	.059	.114	-.045
	Sig. (2-tailed)	.087	.003	.231		.000	.000	.251	.024	.271	.826	.818	.000	.828	.561	.258	.659
AST	Pearson Correlation	.091	.373**	-.105	.773**	1	.437**	.273**	.234*	-.105	.114	.219*	-.128	.067	.198*	.184	-.069
	Sig. (2-tailed)	.370	.000	.299	.000		.000	.006	.019	.299	.257	.028	.206	.510	.048	.066	.495
ALP	Pearson Correlation	-.004	.235*	-.248*	.612**	.437**	1	.074	.134	.135	-.005	.066	-.463**	.055	.268**	.073	-.067
	Sig. (2-tailed)	.965	.019	.013	.000	.000		.464	.185	.182	.963	.516	.000	.589	.007	.471	.510
S Urea	Pearson Correlation	-.057	.080	.104	.116	.273**	.074	1	.735**	-.011	.400**	.513**	.397**	.223*	.620**	.054	.162
	Sig. (2-tailed)	.574	.431	.304	.251	.006	.464		.000	.917	.000	.000	.000	.025	.000	.592	.108
S Creatinine	Pearson Correlation	.135	.144	.053	.225*	.234*	.134	.735**	1	.173	.328**	.292**	.149	.087	.325**	-.012	.066
	Sig. (2-tailed)	.180	.153	.600	.024	.019	.185	.000		.085	.001	.003	.138	.391	.001	.907	.514
S Uric Acid	Pearson Correlation	.096	-.145	-.086	.111	-.105	.135	-.011	.173	1	-.095	-.083	-.220*	-.145	-.141	-.014	.105
	Sig. (2-tailed)	.342	.150	.397	.271	.299	.182	.917	.085		.347	.410	.028	.151	.160	.888	.299
S Sodium	Pearson Correlation	-.069	.158	.063	-.022	.114	-.005	.400**	.328**	-.095	1	.450**	.215*	.185	.394**	.066	-.075
	Sig. (2-tailed)	.496	.117	.534	.826	.257	.963	.000	.001	.347		.000	.032	.065	.000	.511	.456
S Potassium	Pearson Correlation	-.048	.122	.082	.023	.219*	.066	.513**	.292**	-.083	.450**	1	.326**	.315**	.527**	.092	.010
	Sig. (2-tailed)	.637	.225	.418	.818	.028	.516	.000	.003	.410	.000		.001	.001	.000	.365	.924
S Calcium	Pearson Correlation	-.049	-.012	.277**	-.425**	-.128	-.463**	.397**	.149	-.220*	.215*	.326**	1	.146	.331**	-.081	.030
	Sig. (2-tailed)	.627	.907	.005	.000	.206	.000	.000	.138	.028	.032	.001		.147	.001	.421	.768
S Chloride	Pearson Correlation	-.003	-.033	-.062	.022	.067	.055	.223*	.087	-.145	.185	.315**	.146	1	.433**	.096	.126
	Sig. (2-tailed)	.979	.747	.539	.828	.510	.589	.025	.391	.151	.065	.001	.147		.000	.344	.212
S bicarbonate	Pearson Correlation	-.041	.142	.087	.059	.198*	.268**	.620**	.325**	-.141	.394**	.527**	.331**	.433**	1	.089	.067
	Sig. (2-tailed)	.684	.158	.390	.561	.048	.007	.000	.001	.160	.000	.000	.001	.000		.381	.507
S Magnesium	Pearson Correlation	-.125	-.008	-.038	.114	.184	.073	.054	-.012	-.014	.066	.092	-.081	.096	.089	1	-.057
	Sig. (2-tailed)	.216	.940	.710	.258	.066	.471	.592	.907	.888	.511	.365	.421	.344	.381		.573
Glasgow coma scale	Pearson Correlation	-.040	-.049	.074	-.045	-.069	-.067	.162	.066	.105	-.075	.010	.030	.126	.067	-.057	1
	Sig. (2-tailed)	.691	.626	.464	.659	.495	.510	.108	.514	.299	.456	.924	.768	.212	.507	.573	

**, Correlation is significant at the 0.01 level (2-tailed).

*, Correlation is significant at the 0.05 level (2-tailed).

DISCUSSION

Hepatic encephalopathy (HE) is a neurometabolic syndrome characterized by impaired brain function in patients with decompensated cirrhosis.¹⁻³ The pathogenesis of HE is not completely understood and several proposed pathways are implicated in the initiation and exacerbation of this syndrome.³⁻⁵ HE may be clinically apparent in as many as one third of cirrhotic patients and, if rigorously tested, up to two thirds have some degree of mild or subclinical HE.⁶ Ammonia plays a central role in HE as it crosses the blood-brain barrier causing neurological insult mediated by a decrease in excitatory neurotransmission.⁷ Multiple precipitating factors for HE have been recognized and if controlled, may alter the disease acuity and improve mental status⁸ (Table No. 1) In the present study, 100 patients were included. All the patients were males. The mean age of patients was 45.8 ± 13.3 years. (Fig. no.1) 52 patients suffered from comorbidities. Most of the patients were suffering from anemia (36), followed by piles (7) and asthma (6). (Table No. 2) The most common cause of Cirrhosis was Alcohol abuse (80%) followed by Autoimmune hepatitis (10%) and HBV infection (5%). (Fig. no.3) here our study is in accordance with the study done by Vilstrup H, et al. The most common eye response of the patients was 1 (28%) followed by 4 (27%). again here our study is in accordance with the study done by Pantham G et al. (Table No. 4) The most verbal response of the patients was 2, 4 and 5 (24% each). (Table No. 5) The most common Motor response of the patients was 6 (27%) followed by 5 (23%) and 4 (17%). The mean Glasgow coma scale of the patients was 9.9 ± 1.8 (Fig. no.6) The mean Total bilirubin, Albumin and Total Protein of the patients was 1.0 ± 1.1 mg/dL, 4.0 ± 0.4 g/dL and 7 ± 1.5 g/dL, respectively. (Fig. no.7) The mean ALT, AST and ALP of the patients was 33.0 ± 21 mg/dL, 27.9 ± 11.5 g/dL and 179.7 ± 107.9 IU/L, respectively. (Fig. no. 8) The mean S. Urea, S. Creatinine and S. Uric acid of the patients was 43.4 ± 12.1 mg/dL, 1.5 ± 0.3 mg/dL and 5.6 ± 0.9 mg/dL, respectively. (Fig. no. 9b) The mean Serum Sodium, Potassium, Calcium, Chloride, Bicarbonate and Magnesium levels of the patients were 134.6 ± 3.6 , 4.0 ± 0.8 , 8.8 ± 1.3 , 95.6 ± 8.9 , 22.3 ± 5.7 and 1.2 ± 0.2 mEq/L, respectively. (Table No. 10) No correlation was **. Correlation is significant at the 0.01 level (2-tailed). Correlation is significant at the 0.05 level (2-tailed). In our study we came to a conclusion that deficiency in the serum magnesium levels is associated with cirrhosis in alcoholic patients most of the studies like the study done by Iwasa M et al and Shechter M. et al are in accordance with us however multicentric studies with larger sample size are required to come to a conclusion. Therefore, significant magnesium deficiency might be present even though the serum magnesium level is within normal limits

REFERENCES

1. Aldworth G. Hepatic encephalopathy. *Ann Clin Biochem* 2017; 54: 416.
2. Weiss N, Jalan R, Thabut D. Understanding hepatic encephalopathy. *Intensive Care Med* 2018; 44: 231-4.
3. Wijdicks EF. Hepatic Encephalopathy. *N Engl J Med* 2016; 375: 1660-70.
4. Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. *Mayo Clin Proc* 2015; 90: 646-58.
5. Alsaad AA, Stancampiano FF, Palmer WC, Henry AM, Jackson JK, Heckman MG, Diehl NN, Keaveny AP. Serum Electrolyte Levels and Outcomes in Patients Hospitalized with Hepatic Encephalopathy. *Annals of Hepatology*. 2018 Sep 13; 17(5):836-42.
6. Shaker M, Carey WD. Hepatic encephalopathy.
7. Tamaoki S, Suzuki H, Okada M, Fukui N, Isobe M, Saito T. Development of an experimental rat model of hyperammonemic encephalopathy and evaluation of the effects of rifaximin. *Eur J Pharmacol* 2016; 779: 168-76.
8. Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, Weissenborn K, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. *Hepatology* 2014; 60: 715-35.
9. Han KH. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. *Electrolyte Blood Press* 2011; 9: 45-9.
10. Iwasa M, Sugimoto R, Mifudi-Moroka R, Hara N, Yoshikawa K, Tanaka H, Eguchi A, et al. Factors contributing to the development of overt encephalopathy in liver cirrhosis patients. *Metab Brain Dis* 2016; 31: 1151-6.
11. Pantham G, Post A, Venkat D, Einstadter D, Mullen KD. A New Look at Precipitants of Overt Hepatic Encephalopathy in Cirrhosis. *Dig Dis Sci* 2017; 62: 2166-73.
12. Swaminathan R. Disorders of magnesium metabolism. *CPD Bull Clin Biochem* 2000; 2: 3-12.
13. Musso CG. Magnesium metabolism in health and disease. *Int Urol Nephrol* 2009; 41: 357-62.
14. Johnson S. The multifaceted and widespread pathology of magnesium deficiency. *Med Hypotheses* 2001; 56: 163-70.
15. Arnaud MJ. Update on the assessment of magnesium status. *Br J Nutr* 2008; 99 (Suppl 3): S24-36.
16. Cohen L. Physiological assessment of magnesium status in humans: a combination of magnesium load retention and renal excretion. *IMAJ* 2000; 9: 938-9.
17. Shechter M. Body magnesium--the spark of life. *Harefuah* 2011; 150: 41-5, 67 [Hebrew].
18. Hashizume N, Mori M. An analysis of hypermagnesemia and hypomagnesemia. *Jpn J Med* 1990; 29: 368-72.

19. Pasqualetti P, Casale R, Colantonio D, et al. Serum levels of magnesium in hepatic cirrhosis. *Quad Sclavo Diagn* 1987; 23: 12-7.
20. Rocchi E, Borella P, Borghi A, et al. Zinc and magnesium in liver cirrhosis. *Eur J Clin Invest* 1994; 24: 149-55.
21. Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dørup I. Muscle strength, Na,K-pumps, magnesium and potassium in patients with alcoholic liver cirrhosis -- relation to spironolactone. *J Intern Med* 2002; 252: 56-63.
22. Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dørup I. Decreased muscle strength and contents of Mg and Na,K-pumps in chronic alcoholics occur independently of liver cirrhosis. *J Intern Med* 2003; 253: 359-66.
23. BOT TT, Ruth Hadary MD, Lotan S. Magnesium deficiency and minimal hepatic encephalopathy among patients with compensated liver cirrhosis.
24. Weisinger JR, Bellorin Front E. "Magnesium and phosphorus". *Lancet*; 352: 391-396. (1998)
25. Henry JB., Clinical Diagnosis and Management, 17th ed., W.B. Saunder Co. Philadelphia,157 (1984)
26. Galland L. "Magnesium and immune function: an overview. Magnesium" 7(5): 290- 299 (1988)
27. Elin R J. Magnesium: the fifth but forgotten electrolyte. *Amer J Clin Pathol.*; 102: 616- 629 (1994).
28. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. *Clin Chim Acta.*; 294 (1- 2): 1- 26 (2000)